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Abstract.—With the rise of genome-scale data sets, there has been a call for increased data scrutiny and careful selection of
loci that are appropriate to use in an attempt to resolve a phylogenetic problem. Such loci should maximize phylogenetic
information content while minimizing the risk of homoplasy. Theory posits the existence of characters that evolve at an
optimum rate, and efforts to determine optimal rates of inference have been a cornerstone of phylogenetic experimental
design for over two decades. However, both theoretical and empirical investigations of optimal rates have varied dramatically
in their conclusions: spanning no relationship to a tight relationship between the rate of change and phylogenetic utility.
Herein, we synthesize these apparently contradictory views, demonstrating both empirical and theoretical conditions under
which each is correct. We find that optimal rates of characters—not genes—are generally robust to most experimental design
decisions. Moreover, consideration of site rate heterogeneity within a given locus is critical to accurate predictions of utility.
Factors such as taxon sampling or the targeted number of characters providing support for a topology are additionally
critical to the predictions of phylogenetic utility based on the rate of character change. Further, optimality of rates and
predictions of phylogenetic utility are not equivalent, demonstrating the need for further development of comprehensive
theory of phylogenetic experimental design. [Divergence time; GC bias; homoplasy; incongruence; information content;
internode length; optimal rates; phylogenetic informativeness; phylogenetic theory; phylogenetic utility; phylogenomics;
signal and noise; subtending branch length; state space; taxon and character sampling.]

The rapid proliferation of sequencing technology over
the past decade has enabled historically unparalleled
progress in our efforts to reconstruct of the Tree of Life
(Near et al. 2012b; Wiens et al. 2012; Prum et al. 2015;
Ren et al. 2016). Correspondingly, phylogenetic trees
have assumed a central role in studies that span topics
from conservation (Purvis et al. 20005; Dornburg et al.
2017a; Pollock et al. 2017) to the modeling of cancer
and infectious diseases (Zhao et al. 2016; Reiter et al.
2017). However, despite data sets spanning thousands if
not millions of characters, some phylogenetic problems
continue to defy resolution. Faced with a deluge of
sequence data, the question of how to select data
most appropriate for a given phylogenetic problem has
become a major topic of interest (Salichos and Rokas
2013; Pisani et al. 2015; Shen et al. 2017). This question
is not new to phylogenomics and has been a driving
question in the theory of phylogenetic experimental
design for over two decades (Graybeal 1993; Xia et al.
2003).

It is well established that the interaction between time
and the rate of character evolution can be used to predict
the probability of convergence in states that do not reflect
shared evolutionary history (Graybeal 1993; Xia et al.
2003). Given the expected relationship between time,
character evolution, and inference, theory predicts the
existence of an optimal rate of character evolution that
maximizes the generation of phylogenetic information,
while minimizing the accumulation of homoplasious
characters (Goldman 1998). Efforts to determine optimal

rates for phylogenetic inference continue to the present
day (Klopfstein et al. 2017; Steel and Leuenberger
2017), as does the development of approaches that
assess whether a set of characters are evolving at rates
appropriate for resolving a given phylogenetic problem
(Susko and Roger 2012; Townsend et al. 2012; Su and
Townsend 2015). However, several studies have failed to
recover a relationship between the mean rate of change
and the phylogenetic utility of a locus (Aguileta et al.
2008). Further, others have argued that focusing on
rate alone ignores other interacting terms such as tree
structure, complex patterns of character evolution, or
taxon sampling (Heath et al. 2008a; Townsend et al. 2012;
Su and Townsend 2015).

In an effort to reconcile apparently contradictory
views of phylogenetic experimental design, we demon-
strate that all of these views are essentially correct.
Determination of the optimal rates for phylogenetic
inference depends on each of these factors, which exhibit
a range of dependency and influence.

CHARACTERS AS UNITS FOR OPTIMAL RATES

The evolutionary rate relevant to phylogenetic utility is the
rate of evolution of the homologous character—not the rate of

the gene or locus
A core criterion of locus selection for accurate infer-

ence has been the evolutionary rate of a given gene or
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locus (Blouin et al. 1998; Moreira and Philippe 2000; Xia
et al. 2003; Nosenko et al. 2013). However, an investiga-
tion of fungal genomes found no relationship between
the rate at which a locus was evolving and phylogenetic
utility (Aguileta et al. 2008). Is the assumption of the
predictive utility of rates wrong? We argue that it is not.
Instead, we view the assumption that genes or loci can be
characterized by a single evolutionary rate as, perhaps,
the greatest barrier to understanding of the impact of
rates of molecular evolution on phylogenetic utility.

It has become standard practice to incorporate rate
variation across sites into molecular evolutionary mod-
els used for phylogenetic inference (Yang 1996; Sullivan
et al. 1999). However, this practice has not yet taken root
in phylogenetic experimental design, and loci are still
often contrasted by pairwise distances or mean rates
(Aguileta et al. 2008; Makowsky et al. 2010; Lanier et al.
2014). While determining or comparing mean rates is
certainly useful for certain empirical problems (Braasch
et al. 2016), characterizing loci by a single rate can
oversimplify and, in the worst cases, wholly mislead
phylogenetic experimental design. There may be some
loci in which all sites evolve at similar rates in a clock-
like manner, in which case there will likely be a strong
correlation between the mean rate of the locus and its
utility for a phylogenetic problem. In contrast, numerous
loci are comprised of sites that are highly heterogeneous
in their substitution rates. For these loci, attempting to
predict phylogenetic utility using the mean rate across
all sites can mask a large number of suboptimal sites—in
the worst case scenarios, reflecting a rate of change that
is not actually occurring to any individual character the
data set. As such, failure to account for intra-locus site
rate variation can underlie broad findings in which there
is no correlation between the mean rate of evolution of
the locus and its informativeness (Aguileta et al. 2008).

The utility of a character for phylogenetic inference can
be quantified by comparing the expected phylogenetic
signal supporting a correct resolution (R) of a quartet to
the amount of noise expected to accumulate in support
of the most supported incorrect quartet (Townsend
et al. 2012; Su et al. 2014; Su and Townsend 2015).
By calculating the point at which this difference is
largest (by the old calculus trick of setting the partial
derivative of the function of utility to zero), an optimal
rate is defined (Appendix). Using this framework, we
can explore the impact of among-site rate variation on
inference. Consider a hypothetical phylogenetic quartet
and a set of characters evolving close to the optimal
rate. This data set would be predicted to be of high
experimental design utility under both a mean rate
criterion and the framework of Su and Townsend (2015).
However, as the variance in rates begins to increase, there
is a clear loss in utility predicted by the equations of Su
and Townsend (Fig. 1).

The issues that arise from failing to account for
site-rate variation in phylogenetic experimental design
should be intuitive and reminiscent of classical phylo-
genetic problems such as the estimation of divergence
times using a strict molecular clock. Both among-site
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FIGURE 1. The effect of increasing variance of site rates
on phylogenetic utility: probability of noise compared with signal
increases as the standard deviation of a unimodal distribution of rates
of evolution increases (where the mean of the distribution is set at the
optimal rate �̂).

rate variation within loci as well as shifts in life history
that correlate to changes in molecular rates between taxa
are commonly observed across the tree of life (Bromham
et al. 2015; Dornburg et al. 2012; Berv and Field 2017;
Minias et al. 2017; Gan et al. 2018). As such, we argue that
use of mean rate alone can drive erroneous expectations
of phylogenetic utility and promote poor experimental
design.

OPTIMAL RATES, DIVERGENCE TIME, AND INTERNODE

LENGTH

The utility of a character evolving at a rate depends not only
on the depth of the phylogenetic inference, but also on the

length of the internode to be resolved.
It has long been recognized that the time scale

of a given phylogenetic problem will impact which
sites are of utility for topological resolution (Graybeal
1993; Xia et al. 2003; Mueller 2006). In addition to the
rate of character evolution and the passage of time,
it has also become increasingly clear that the time
between divergence events, or internode distances, can
strongly impact the utility of a set of characters for
inference. As demonstrated by Townsend et al. (2012)
and Susko and Roger (2012), rates of evolution that
are highly informative for some internodes within a
timeslice of a tree might not contribute to resolution
or—in the worst case—might positively mislead infer-
ence. The complexity of calculating optimal rates for
specific internode distances was recently highlighted
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FIGURE 2. Optimal rate of change �̂ for a character for
different quartet internode lengths t0, based on a quartet tree with four
subtending branches of length T =1 under a Jukes–Cantor model.

by Steel and Leuenberger (2017), who examined optimal
rates given an asymptotically short internode as in
Townsend (2007). If we are to advance phylogenetic
experimental design, a generalized evaluation of optimal
rates under different combinations of time, internode,
and rate is warranted.

For every short, deep internode length t0 with four
subtending branches of length T, we can again calculate
the value at which R (the amount of resolution, equal
to the phylogenetic signal supporting a correct topology
minus the amount of noise in support of the most sup-
ported incorrect topology; c.f. Townsend et al. (2012); Su
et al. (2014); Su and Townsend (2015) is largest, defining
how the optimal rate �̂ changes (Appendix, Eq. A6).
Comparing the effect on the optimal rate �̂ to the effect
on probabilities of signal, noise, and polytomy (based
on a character evolving at rate �̂) reveals a stark contrast.
The length of the internode has enormous impact on the
probability of resolving the internode; however, it has
very little impact on the optimal rate of a character to
resolve that internode (Fig. 2). The reason for this contrast
can be explained by consideration of the fundamental
drivers of signal and noise in phylogenetic inference.
Probability of resolution is dramatically impacted by the
length of the internode, because the probability that a
character yields a shared derived state decreases mono-
tonically (and approximately proportionally) with inter-
node length t0 as t0 values approach zero. If the internode
is very long, there is a high chance a character will change
along its duration. If the internode is very short, there is
a low chance a character will change along its duration.

Conversely, optimal rate is relatively unaffected by
internode length. If T is long, slower rates will be optimal
so that important changes during the internode t0 are
not obscured by subsequent changes. If T is short, faster

rates will be optimal to ensure a change occurs during the
internode t0. For most persistent phylogenetic problems,
t0 �T. Consequently, the main issue that modulates
optimal rate is therefore the length of T (Fig. 2). This
mismatch between optimal rates and predictions of
information content reveals that quantification of the
optimality of rates does not provide a sufficient cri-
terion for prediction of phylogenetic performance. The
significant impact of t0 on the probability of resolution
clarifies that nevertheless, neglecting internode length is
a potential pitfall of phylogenomic experimental design
and inference.

OPTIMAL RATES AND SUBTENDING BRANCH LENGTHS

The utility of a character also depends on the relative rates
and times of evolution of subtending lengths of the internode

to be resolved.
Expanding from the consideration of internodes, the

subtending branching times of the quartet are also
important to consider (Fig. 3). Varying the lengths of
subtending branches will impact the degree to which
rates are informative for resolving a specific node (Su and
Townsend 2015). Consider assigning an internode length
of t0 =0.1 and a length of T3 =T4 =1, then T2 =T3 +t0 =
1.1 (T2). Examining a range of values for T1 between 1.1
to 10 and solving at each value for the optimal rate �̂
for each value by calculating the value of � which R
is maximized (Appendix) provides a depiction of how
increasing the length of a single subtending branch can
increase optimal rates (Fig. 4).

OPTIMAL RATES AND CHARACTER STATES

The utility of a character evolving at a rate depends on the
number of states the character can adopt.

Investigations of optimal rates have largely focused
on time and tree structure, while simplifying model
assumptions of character evolution to quantify rates
(Shpak and Churchill 2000; Townsend 2007; Steel and
Leuenberger 2017). These simplifications often involve
conditioning character evolution on equal probabilit-
ies of change between character states (s). However,
most empirical data sets will violate this assump-
tion. Heterogenous rates of change between characters
such as asymmetric transitions between transitions or
transversions, or rarely reversed morphological states
will drive a mismatch between the quantified rates of
character evolution under simplified assumptions and
those exhibited by the data (Yang 1996; Phillips et al.
2004; Leaché et al. 2015). Su et al. (2014) incorporated
explicit specification of substitution models into locus
scrutiny, providing a framework from which we can
generalize both how the substitution model and the
expansion or contraction of character state space (e.g.,
nucleotide versus amino acid substitution matrix) in
itself impact quantification of optimal rates similar to
the approach above.

Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy047/5043533
by Yale University user
on 06 August 2018



Copyedited by: TP MANUSCRIPT CATEGORY: Regular Manuscript

[21:23 1/8/2018 Sysbio-OP-SYSB180048.tex] Page: 4 1–14

4 SYSTEMATIC BIOLOGY

A B C

T4T3T2T1

t0

T4T3T2T1

t0

T1a

T1b

T2
T3 T4

t0

T4T3T2 T4T3T2 a T2
T3 T4

T1 = T2 = T3 = T4 T1 =  T2   =   T3 =  T4
T1 >  T2   >   T3 =  T4

FIGURE 3. Rooted phylogenetic quartets, in which the topology and/or the shared evolutionary history between taxa is varied by changing
the length of the quartet internode t0 and the lengths of the subtending branches T1 −T4. A) A balanced topology is illustrated with equal values
for subtending branches (T). In contrast, B) an unbalanced topology is illustrated with unequal times of divergence, comparing T1 =T2 with
T3 =T4, and C) a pectinate topology is illustrated in which T1 >T2 >T3 =T4. The differences in shared history among scenarios result in different
optimal rates.
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FIGURE 4. Optimal rate �̂ for a single character to resolve a pectinate
quartet tree. The internode length (t0) is 0.1 and the three subtending
branches are of lengths T3 =T4 =1, and T2 =1.1 (as in Fig. 3C), varying
the divergence of the deepest-branching lineage, T1 (light branch in
the graphics along the x-axis).

By expressing R as a function of�and s (Appendix), we
can expand the above framework and numerically solve
for �̂ at any given value of s. The solution demonstrates
that the character state space per se has little impact
on optimal rate estimates (Fig. 5). However, there is
a mismatch between the effect of s on optimal rates
versus the effect of s on resolution. Increasing the
state space lowers probabilities of incorrect resolution
due to homoplasy. In contrast, evaluating �̂ across a
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FIGURE 5. Optimal rate of change �̂ for a range of character
state spaces from 2 to 20 as well as signal, noise, and polytomy
probabilities, for resolution of a quartet with an internode t0 =0.1 and
four subtending branches T1 =T2 =T3 =T4 =T =1.

range of substitution models demonstrates little effect
of substitution model on either optimal rate estimates or
predicted probabilities of resolution (Fig. 6).

OPTIMAL RATES AND TAXON SAMPLING

The utility of a character evolving at a rate depends not only
on the depth of the phylogenetic inference and the length of

the internode to be resolved, but also on the degree of ingroup
(and outgroup) taxon sampling.

The question of the effect of addition of taxa
on phylogenetic inference has long been a topic of
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A B C

FIGURE 6. Optimal rate �̂ for a character to resolve a quartet with an internode t0 =0.1 and four subtending branches T1 =T2 =T3 =T4 =T =1,
as a function of applicable reversible models of molecular evolution. The models used in these analyses are based on the parameter values of
models estimated for the (A) actin (ACT1) marker of 29 taxa of the yeast genus Candida and allied teleomorph genera (from Su et al. 2014; see
also Su and Townsend 2015); (B) 12S sequences of 47 species of lemurs (from Federman et al. 2016); and (C) the glycosyltransferase (glyt) marker
for 83 species of Antarctic teleost fishes (from Near et al. 2012a; see also Dornburg et al. 2017a).

conversation in the phylogenetic community (Pollock
et al. 2002; Zwickl and Hillis 2002a; Hedtke et al.
2006a; Heath et al. 2008b; Crawley and Hilu 2011). For
tractability, investigations of optimal rates for inference
often ignore this subject by focusing on a defined
topology with a set number of leaves, or even restricting
attention to a simple phylogenetic quartet. However,
additional information arising as a consequence of taxa
sampled that surround the quartet results in a gap in our
ability to accurately predict utility. Recently Townsend
and Lopez-Giraldez (2010) partially bridged this gap,
demonstrating changes in optimal rate that occur as a
consequence of adding an additional taxon unit.

Townsend and Lopez-Giraldez (2010) considered pla-
cing an additional lineage into a quartet. For this lineage
placed onto the quartet to yield novel resolution of the
quartet, three things must happen. If (1), one or more
changes in character state occurred on the internode,
(2) no changes occur along four subtending lineages,
and (3) the sister lineage to the ingroup formed by
the addition of the new taxon underwent one or more
changes in character state since diverging along an
independent evolutionary pathway [Time from root of
tree (T) – new internode (t̄)], then the expectation of the
informativeness of sampling a character of a new taxon is

e−sT�
(

1−e−t0�
)(

1−1−e−(T−t̄)�
)
, (1)

where s represents the character state space and t0
represents the internode length; c.f. Equation 3 in Town-
send and Lopez-Giraldez (2010). Townsend and Lopez-
Giraldez (2010) illustrated the effect of taxon sampling
compared to character sampling, demonstrating that the
proximity to the deep internode of the additional taxon
has a marked effect on the overall utility of additional
taxon sampling—whereas it has a modest effect on the
optimal rate: in their setting, Townsend and Lopez-
Giraldez (2010) found the optimal rate (�̂t) for a novel
ingroup lineage to be �̂t ≈ 1

2.2T . This rate is faster than

the optimal rate for addition of a character to a lineage
present in an extant quartet, 1/4T (Townsend 2007; Fisc-
her and Steel 2009), consistent with both the simulation-
based expectation that higher rates should become more
advantageous as taxon sampling is increased (Hillis and
Cannatella 1998; Heath et al. 2008a) and with theoretical
analyses of several asymptotic scenarios (Townsend and
Leuenberger 2011). Adding taxa provides additional
information on the historical state of characters (Heath
et al. 2008a), so it should be no surprise that taxon
sampling strategies will impact calculations of optimal
rates. Although the above framework has yet to be
expanded to the complex taxon sampling strategies
observed across empirical data sets, it is clear that adding
one or more taxa that diverged close to an internode
of interest will alter the predicted utility of different
markers.

OPTIMAL RATES AND CHARACTER SAMPLING

Optimal rates of evolution vary depending on the desired
level of confidence that we demand to support a phylogenetic

hypothesis.
Up to now, we have defined the “optimal rate” to be

the rate at which a single character is most likely to
provide a pattern supportive of the correct resolution.
We have also defined the desired “resolution” to be just
a single character of support over either other resolution
of a quartet. However, defining the utility of a data set
to be gathered does not depend only on parameters
of the tree and the molecular evolutionary model or
the number of characters we are sampling. We must
also specify the amount of node support necessary
to proclaim a phylogenetic problem “resolved”. Oft-
used metrics of phylogenetic support, such as bootstrap
support values, are one way to quantify support, but
bootstrap proportions and Bayesian Posterior Probabil-
ities have a narrow scope and can strongly support the
incorrect topology. As few as four additional characters
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FIGURE 7. Optimal rate of change �̂ to resolve a quartet with an
internode t0 =0.1 and four subtending branches T1 =T2 =T3 =T4 =1,
with the goal to achieve a specified level of resolution with maximum
probability (defined as the number of characters supporting the true
quartet above and beyond the support for the next most supported
quartet) from 2 to 30.

supporting a given tree can provide 95% bootstrap
proportion for a given topological inference (Felsenstein
1985). Bayesian Posteriors are generally viewed as less
conservative, even more rapidly maxing out their scope
for conveying level of support (Alfaro 2003). As we
gather data sets spanning thousands, if not millions
of characters, and evaluation of data is based more on
the degree of support in light of potential confounders
rather than the statistical significance differentiating a
result from a polytomy, it is essential to also quantify and
reflect on the relationship between optimal rates and the
targeted level of evidence sufficient to consider a node
“strongly resolved”.

Townsend et al. (2012) quantified the probability of
resolution based on one character supporting the correct
topology. By expanding this formulation to include
a specified number of supporting characters, we can
express R as a function of � and s (Appendix) and
numerically solve for �̂ for any desired number of
characters supporting the quartet tree. The solution
demonstrates that targeting more characters that sup-
port the correct quartet resolution will increase optimal
rate estimates (Fig. 7). While the solution that faster rates
are necessary to obtain more characters is potentially
intuitive, faster rates present an inevitable problem for
inference. Increasing the target differential of supporting
characters (and therefore, the optimal rate) also has the
effect of lowering predicted probabilities of resolution,
because instances of convergence in character state are
expected to increase (Fig. 7). As we march eagerly into
the use of genome-scale data, this predicted relationship
between optimality and homoplasy raises a general

question of experimental design: when evaluating large,
complex topologies that are assemblages of many dis-
tinct hypotheses, how many characters should we target
to gather sufficient evidence? As cases of strongly sup-
ported topological incongruence become increasingly
pervasive (Brown et al. 2018; Reddy et al. 2017; Springer
and Gatesy 2018; Ilves et al. 2018), consideration of this
axis of experimental design represents an important and
exciting frontier.

OPTIMAL RATES AND PHYLOGENETIC EXPERIMENTAL

DESIGN

Studies of optimal rate have been a conceptual
keystone of phylogenetic experimental design, poten-
tially empowering cost effective sequencing, maximizing
productivity of staff, and enabling accurate inference
(Townsend and Leuenberger 2011; Klopfstein et al. 2017).
Far from being intractable, we have demonstrated that
optimal rates for phylogenetic inference are complex
but calculable under a range of conditions that include
varying tree structure, character states, and underlying
molecular models. While all of these factors do have
an impact on quantification of optimal rates, we have
demonstrated that their effects on optimal rate values
are usually modest. For example, acceleration of the rate
of evolution of a subtending branch by as much as an
order of magnitude can markedly affect the utility of a
character to help resolve a phylogenetic problem (Su and
Townsend 2015), but only produces a minor change in the
optimal rate to solve that problem (Fig. 4). Moreover, the
difference in optimal rate between different complexities
of reversible models of molecular evolution, ranging
from a Jukes-Cantor to a general time reversible model,
is virtually negligible (Fig. 6). The modest sensitivity
of optimal rate to other parameters of the evolutionary
process demonstrated here suggests that, generally,
optimal rates reside within a known window across
a wide range of conditions for a temporally specific
phylogenetic problem, and supports the practice of
predicting utility of a set of characters on the basis of
their evolutionary rate.

Although this apparent robustness of optimal rate is
encouraging, there are several caveats to consider with
empirical data. First, it is important to consider that
optimal rates by our definition do depend critically on
what specific phylogenetic problem an investigator is
attempting to resolve. Empirical studies—including our
own—typically demand that their data to resolve nodes
across a wide range of time scales (Near et al. 2013;
Federman et al. 2016; Cantalapiedra et al. 2017; Forrestel
et al. 2017). This desire for utility across historical time
creates an essential conflict of experimental design.
Optimal rates for resolving one node can be subop-
timal, uninformative, or even positively misleading for
resolving another. Thoughtful contemplation of this
fundamental apothegm of phylogenetic experimental
design is of high utility when screening genomic scale
data for loci of predicted utility for resolution of
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some of the most recalcitrant nodes across the Tree of
Life.

Taxon sampling will also alter predictions of what
rates are optimal. While a reasonable expectation that
additional taxon sampling will allow for faster rates to be
of utility exists, how complex taxon sampling strategies
impact optimal rate estimates is not as yet entirely
clear. In principle, effective taxon sampling should
enable investigators to harness faster-evolving markers
with less fear of misleading homoplasy (Zwickl and
Hillis 2002b; Hedtke et al. 2006b; Wilson 2011; Crawley
and Hilu 2012; Hilu et al. 2014). Intuitively, adding
more taxa provides a concave, sublinear advantage
of breaking up long branches, improving ancestral
information, thereby generally increasinging accuracy.
However, adding more taxa will lead to a convex,
nonlinear increase in the complexity of fully resolving
all branches of a phylogenetic tree topology, demanding
resolution of more hypothetical ancestral relationships
from the same data. Further, addition of taxa can increase
the probability of introducing new rate heterogeneities
and biases, thereby adding long branches and potential
model violations to an erstwhile tractable phylogenetic
problem (Reddy et al. 2017). While we lack a theoretical
framework that evaluates phylogenetic utility explicitly
for highly sampled, complex trees, it is clear that phylo-
genetic information content is not evenly distributed
between taxa, within loci, or among characters within
loci (Townsend and Lopez-Giraldez 2010; Bordewich
et al. 2017). This variation of phylogenetic information
content creates one of the biggest challenges for util-
izing phylogenetic experimental design: translating the
expectations of optimal rates back to empirical data
sets.

The distribution of site rates within empirical data
sets often extends far beyond the boundaries of optimal
rate estimates for a given phylogenetic problem. As
data sets containing hundreds if not thousands of loci
are becoming increasingly common (Jarvis et al. 2014;
Eytan et al. 2015; Prum et al. 2015), how then do we
apply the expectations of optimal rates and inference to
the selection of loci for inference? Given the ubiquity
of site-rate heterogeneity within loci, the practice of
considering the mean rate as a criterion for a gene being
optimal for inference (Fig. 1) is not appropriate. In the
worst case scenario, assigning a single rate to a complex
locus can drive a mismatch between empirical results
and presumed theoretical expectations between optimal
rates and phylogenetic utility (c.f. Aguileta et al. 2008;
Moeller and Townsend 2011, 2013). Fortunately over
the past several years early approaches that incorporate
site rate heterogeneity (Townsend 2007) have become
increasingly sophisticated (Susko and Roger 2012; Town-
send et al. 2012; Su et al. 2014; Su and Townsend
2015). By assessing how rates at each individual site
contribute to the overall predicted utility of a locus,
these approaches have laid a foundation that facilitates
a much needed theoretical expansion of phylogenetic
experimental design. However, additional challenges
remain.

It is our view that a solitary focus on optimal rates
estimated under specific conditions offers diminishing
returns for empirical phylogeneticists. Indeed, multiple
authors have pointed out (consistent with theory) that
near-optimal rates are almost as informative as optimal
rates (Yang 1998; Klopfstein et al. 2017). Instead, we
believe that continuing to build a practical theory of
phylogenetic experimental design is critical if we are
to meet the challenge of providing a more robust
predictive framework for empirical studies. For example,
it has been well established that rates of molecular
evolution can also change along branches. Changes in
life history can drive extreme changes in rate between
lineages (Smith and Donoghue 2008; Dornburg et al.
2012; Lanfear et al. 2013), while clade-wide changes
in diversification dynamics drive rate increases or
decreases across an entire topology within a geologic
time-slice (Steiper and Seiffert 2012; Berv and Field
2017). However, phylogenetic experimental design rarely
incorporates either phenomenon. Integration of the
predicted relationship between molecular rates and life
history into considerations of phylogenetic utility is an
avenue of tremendous potential. Likewise, studies of
experimental design largely consider site rates to evolve
under a Poisson process. However, empirical data sets
often do not. Compositional biases have been repeatedly
highlighted as problematic in empirical data sets (Cox
et al. 2014; Li et al. 2014; Dornburg et al. 2017b; Reddy et al.
2017). Although the impact of non-randomly evolving
compositional patterns on phylogenetic experimental
design methods has not been rigorously evaluated, it is
reasonable to intuit that high levels of bias could drive
convergences in site patterns that appear to be evolving
at a rate near “optimal”. A theory of bias in phylogenetic
experimental design represents another highly useful
area of development for the phylogenomics community.

CONCLUSION

Over the past several decades, we have made tre-
mendous strides towards developing a conceptual
understanding of the relationship between the rate of
evolution and our ability to resolve a given phylogenetic
problem. It is well known that the factors of a phylo-
genetic problem highlighted here can markedly affect
accurate inference. However, despite this complexity,
these factors often result in very minor changes in
optimal rates of change for phylogenetic resolution.
This inequivalency of effect on expected information
and optimality is yet one more example of the utility
of the further development of theory of phylogenetic
experimental design. The effort devoted should be ana-
logous to the longstanding effort within the phylogenetic
community devoted to developing inference methods.
Just as phylogenetic inference methods have grown to
accommodate complex evolutionary patterns, so too
must the theory of phylogenetic experimental design if
it is to be comprehensive. Given that lineage- and/or
locus-specific patterns of rate heterogeneity as well as
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compositional biases are common features of genomic
data sets, developing theory that aids in overcoming
these challenges to empirical phylogenomics should
provide exciting and highly useful avenues of research.
Such advances are critical if we are to achieve consistency
of inference across the Tree of Life and generate a
robust understanding of the processes that maintain
biodiversity.
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APPENDIX

To demonstrate the impact that site rate variation can
have on inference, a metric that facilitates quantification
of the expected level of support a given character
contributes towards resolution of the true tree is needed.
Such a framework was recently developed (Townsend
et al. 2012; Su and Townsend 2015) by deriving a series
of equations that calculate the predicted probability
of a character exhibiting a synapomorphic pattern of
character states at the terminal tips of a phylogenetic
quartet that is consistent with the true quartet topology
(denoted “y” in Equation 4 of Townsend et al. 2012
and in Equation 3 in Su and Townsend 2015), and the
probabilities of this character exhibiting a homoplasious
pattern of character states consistent with either of the
two possible incorrect quartet topologies (denoted x1
and x2 in Equations 5 and 6 in Townsend et al. 2012, and
Su and Townsend 2015). This theory is built upon the
well-established expectations of nucleotide substitution
under a GTR model. To calculate the average rate of
substitution, �, for a given character, we must consider
the instantaneous rate (qij) of changes in nucleotide from
i to j, where j �= i and i=A, G, C, or T in the instantaneous
rate matrix (c.f. Q(�); Whelan et al. 2001) and calculate

�=
∑

i

∑
j �=i

�iqij, (A1)

with �i (i=A, G, C, T) representing the frequencies of
each nucleotide state at equilibrium (also see Townsend
et al. 2012; Su et al. 2014; Su and Townsend 2015). From
here, we can generate a substitution probability matrix
P(�,t) that describes the probability of a nucleotide state
change in a finite time (t) through the following equation

P(�,t)=eQ
(
�
)
t, (A2)

Via eigendecomposition of Equation A2, Su and
Townsend (2015) developed a theoretical framework that

predicts the probability of a change in character state
pattern (e.g., yielding synapomorphies or homoplasy)
for a phylogenetic quartet with four uneven subtending
branches. The length (in time) of the internode of this
quartet tree is represented by t0; the lengths of the four
subtending branches are denoted as T1, T2, T3, and T4.
The rate of substitution of a molecular character under
investigation can be specified as � along the internode
and along each of the four subtending branches. The
assumption of homogeneity of the average substitution
rate can be relaxed by allowing characters to evolve at
different rates in the internode and the four subtending
branches (c.f. Fig. 1 in Su and Townsend 2015).

Based on this framework, an optimal value of �
for the character to correctly resolve the quartet tree
(�̂) can be calculated as the value of � at which the
level of resolution of an internode R=y−Max(x1,x2)
is maximized, where y is the probability of the single
character supporting the correct quartet subtree, and
x1 and x2 are the probabilities of the single character
supporting each of the two incorrect quartet subtrees.
Because of symmetry, support for either incorrect tree
is equal (this symmetry to applies to all subsequent
figures). Because R is uniformly concave, this optimum
can be obtained by the old calculus trick of setting the
partial derivative of R with respect to � equal to zero
and solving (analytically or numerically) for its zero
value. Provided the second derivative is negative, this
procedure yields an optimal value of �, �̂, at which R is
maximized. Obtaining �̂ is eased by calculating the value
of � at which y−x1 is maximized: by symmetry, the rate
that maximizes R=y−Max[x1,x2] will also maximize
R̄=y−x1.

To evaluate the scenario presented in Figure 3A, we
can use Equation 3 of Su and Townsend (2015),

y
(
�0,�1,�2,�3,�4;t0,T1,T2,T3,T4

)
=

∑
M

∑
N

∑
C1=C2

∑
C3=C4 �=C1

�MPMN
(
�0,t0

)
PMC

(
�1,T1

)

×PMC2

(
�2,T2

)
PNC3

(
�3,T3

)
PNC4

(
�4,T4

)
, (A3)

where M and N denote the ancestral states of the
nucleotide character at the two ends of the internode,
whose length in time is represented by t0; and C1, C2,
C3, and C4 represent the nucleotide character’s states at
the terminal tips of the four subtending branches (T1,
T2, T3, and T4, respectively); and Pij(�,t) provides the
probability that the character with average substitution
rate � will change from nucleotide i to nucleotide j
(j �= i) after time t. For Figure 3A, the lengths of the four
subtending branches are all equal to 1, so we can assign
T1 =T2 =T3 =T4 =1, and assign the instantaneous rate
and base frequency parameters to be consistent with
the Jukes–Cantor (JC) model of nucleotide substitution
(�i =0.25, and rij =1, where j �= i, i=A, G, C, or T,
and rij represents the relative rate parameter in the
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instantaneous rate matrix Q(�), yielding

y= 3
64

+ 27
64

e
−16�

3 + 9
32

e
−8�

3 − 3
16

e− 16�
3 − 4t0�

3

− 3
8

e−4�− 4t0�

3 − 3
16

e− 8�
3 − 4t0�

3 . (A4)

Evaluating Equations 4 and 5 in Su and Townsend (2015),
symmetry of the quartet tree dictates that

x1 =x2 = 3
64

+ 3
64

e
−16�

3 − 3
32

e
−8�

3 + 3
16

e− 16�
3 − 4t0�

3

− 3
8

e−4�− 4t0�

3 + 3
16

e− 8�
3 − 4t0�

3 , (A5)

where x1 and x2 can be calculated similarly to Equation
A3. The character evolving at a rate that maximizes
R=y−Max[x1,x2] is predicted to provide the greatest
support. Invoking symmetry, the rate that maximizes
R=y−Max[x1,x2] will also maximize R̄=y−x1, there-
fore,

R̄= 3
8

e
−16�

3 + 3
8

e
−8�

3 − 3
8

e− 16�
3 − 4t0�

3 − 3
8

e− 8�
3 − 4t0�

3 , (A6)

and

∂R̄
∂�

=−2e
−16�

3 −e
−8�

3 − 3
8

e− 16�
3 − 4t0�

3

(
− 16

3
− 4t0

3

)

− 3
8

e− 8�
3 − 4t0�

3

(
− 8

3
− 4t0

3

)
. (A7)

Solving for the value of � at which Equation A7 equals
zero is analytically challenging. However, a numerical

solution for ∂R̄
∂� =0 can be readily obtained (and therefore,

the solution of ∂R
∂� =0, and therefore, �̂, the optimal

value of �). To generate Figure 2, we evaluated Equation
A7 above at a range of values of t0, then solved for �̂
numerically at each value.

In the scenario presented in Figure 4, the internode
t0 =0.1, and we fix the length of three of the four
subtending branches such that T3 =T4 =1 and T2 =T3 +
t0 =1.1. We then calculate �̂ depending on T1, which can
be obtained using Equation A3—as it was in Equations
A4–A6—by substituting the quartet tree branch lengths
and JC model instantaneous rate and base frequency
parameters into Equations 3–5 in (Su and Townsend,
2015). In this case,

y=0.047− 3e−4.27�

32
− 3e−2.93�

32
+0.14e

−8�
3

− 3
16

e−4.27�− 4T1�

3 +0.42e−4.13�− 4T1�

3

− 3
16

e−2.93�− 4T1�

3 −0.094e−2.8�− 4T1�

3

+0.047e−1.47�− 4T1�

3 (A8)

Using symmetry (T3 =T4),

x1 =x2 =0.047− 3e−4.27�

32
+ 3e−2.93�

32
−0.047e

−8�
3

+ 3
16

e−4.27�− 4T1�

3 +0.047e−4.13�− 4T1�

3

− 3
16

e−2.93�− 4T1�

3 −0.094e−2.8�− 4T1�

3

+0.047e−1.47�− 4T1�

3 . (A9)

In this scenario, defining

R̄=y−x1 =−3e−2.93�

16
+0.1875e

−8�
3 − 3

8
e−4.27�− 4T1�

3

+0.375e−4.13�− 4T1�

3 , (A10)

and differentiating

∂R̄
∂�

=0.55e−2.93�−0.5e
−8�

3 − 3
8

e−4.27�− 4T1�

3

(
−4.27− 4T1

3

)

+0.375e−4.13�− 4T1�

3

(
−4.13− 4T1

3

)
. (A11)

a numerical solution for ∂R̄
∂� =0 can be readily obtained.

The scenario presented in Figure 5 corresponds to
a quartet tree with four even subtending branches as
described by Townsend et al. (2012) in the first iteration of
phylogenetic signal and noise analysis. Townsend et al.
(2012) derived the expressions for y,x1, and x2 for a
molecular character evolving at an average substitution
rate of � for resolving a quartet tree with an internode
t0 and four subtending branches of equal length T.
The character follows the Poisson model of molecular
evolution and the number of character states in the
Poisson model is s. By substituting t0 =0.1 and T =1 into
Equation 4 in Townsend et al. (2012),

y= −1+s
s3 +

e− 3.1s�
−1+s

(
−8+12s−4s2

)
s3

+
e− 2s�

−1+s

(
2+e− 0.1s�

−1+s
(
4−4s

)−4s+2s2
)

s3

+ e− 4s�
−1+s (−1+3s−3s2 +s3 +e− 0.1s�

−1+s (4−8s+5s2 −s3))
s3 .

(A12)

Evaluating Equations 5 and 6 in Townsend et al. (2012)
and using the symmetry between x1 and x2 in this
scenario,

x1 =x2 = −1+s
s3 + e− 3.1s�

−1+s (−8+12s−4s2)
s3

+ e− 2s�
−1+s (2−2s+e− 0.1s�

−1+s (4−6s+2s2))
s3
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+ e− 4s�
−1+s (−1+s+e− 0.1s�

−1+s (4−6s+2s2))
s3 . (A13)

In this scenario,

R̄=y−x1 = e− 2s�
−1+s (2+e− 0.1s�

−1+s (4−4s)−4s+2s2)
s3

− e− 2s�
−1+s (2−2s+e− 0.1s�

−1+s (4−6s+2s2))
s3

− e− 4s�
−1+s (−1+s+e− 0.1s�

−1+s (4−6s+2s2))
s3

+ e− 4s�
−1+s (−1+3s−3s2 +s3 +e− 0.1s�

−1+s (4−8s+5s2 −s3))
s3 ,

(A14)

and

∂R̄
∂�

=−0.1e− 2.1s�
−1+s (4−4s)

(−1+s)s2 + 0.1e− 4.1s�
−1+s (4−6s+2s2)
(−1+s)s2

+ 0.1e− 2.1s�
−1+s (4−6s+2s2)
(−1+s)s2

− 2e− 2s�
−1+s (2+e− 0.1s�

−1+s (4−4s)−4s+2s2)
(−1+s)s2

− 0.1e− 4.1s�
−1+s (4−8s+5s2 −s3)

(−1+s)s2

+ 2e− 2s�
−1+s (2−2s+e− 0.1s�

−1+s (4−6s+2s2))
(−1+s)s2

+ 4e− 4s�
−1+s (−1+s+e− 0.1s�

−1+s (4−6s+2s2))
(−1+s)s2

− 4e− 4s�
−1+s (−1+3s−3s2+s3+e− 0.1s�

−1+s (4−8s+5s2 −s3))
(−1+s)s2 .

(A15)

The value of �̂ at any given value of s can then be solved
numerically.

Lastly, in the various scenarios presented in Figure 6
where a character evolves according to different models
of nucleotide substitution and the quartet tree has an
internode t0 =0.1 and four equal subtending branches
T1 =T2 =T3 =T4 =1, the value of �̂ can be computed in
the same way as it was for Figures 1 and 4. For each
model of nucleotide substitution considered, Equations
3–5 can be evaluated by setting T1 =T2 =T3 =T4 =1,
t0 =0.1, and the instantaneous rate and base frequency
parameters as those estimated for that particular model
for the ACT1 marker in the analysis by Su et al. (2014).
For example, for the F81 model (Felsenstein 1981), the
estimated model parameters are �T =0.32, �C =0.29,
�A =0.23, and �G =0.16, and rTC=rTA=rTG=rCA=
rCG=rAG=1. By substituting those model parameter
values and the tree branch length values into Equations

3–5 in Su and Townsend (2015), formulae for y, x1, and
x2 can be obtained. In this case,

∂R̄
∂�

=1.96264e−5.57823�−1.91478e−5.44218�

−1.41610×10−17e−4.08163�+0.66748e−2.85714�

+0.42726e−2.85714�− .63570e−2.72109�

− .40691e−2.72109�+0.00660e−1.49660�

− .00660e−1.49660�− .00600e−1.36054�

+0.00600e−1.36054�+4.13029×10−19e−0.13605�.
(A16)

The value of �̂ for the model can then be computed
by setting ∂R

∂� =0 and solving numerically. The same
approach can be used to calculate �̂ for the other models
of nucleotide substitution.
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